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We consider free convection driven by a heated vertical plate immersed in a
nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to
a fluid, the bulk of which has a stable stratification, characterized by a non-uniform
vertical temperature gradient. This gradient is assumed to have a typical length scale
of variation, denoted Z0, while Ψ0 is the order of magnitude of the related heat flux
that crosses the medium vertically.

We derive an analytic solution to the Boussinesq equations that extends the classical
solution of Prandtl to the case of nonlinearly stratified media. This novel solution is
asymptotically valid in the regime RaS � 1, where RaS denotes the Rayleigh number
of nonlinear stratification, based on Z0, Ψ0, and the physical properties of the medium.

We then apply the new theory to the natural convection affecting the vapour phase
in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that
the cylindrical storage tank is subject to a constant uniform heat flux on its lateral
and top walls. We are interested in the vapour motion above a residual layer of liquid
in equilibrium with the vapour. High-precision axisymmetric numerical computations
show that the flow remains steady for a large range of parameters, and that a bulk
stratification characterized by a quadratic temperature profile is undoubtedly present.
The application of the theory permits a comparison of the numerical and analytic
results, showing that the theory satisfactorily predicts the primary dynamical and
thermal properties of the storage tank.

1. Introduction
Thermally stratified media often occur in nature. The literature on free convection –

driven by various heat sources – contains numerous studies on its interaction with
a stratified medium. Most analyses have focused on linear stratification, as this
corresponds to a constant heat flux which crosses the medium vertically, and because
this situation satisfies the conduction equation far from heat sources. However, other
stratification situations arise that are not based on pure heat diffusion. The purpose
of the present work is to analyse a particular case of natural convection in nonlinearly
stratified medium.

The study is motivated by problems arising in energy storage. Such problems
are often crucial with respect to certain new forms of energy, especially concerning
their use in transport or industry. The problems become important for the cryogenic
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storage of fuels such as hydrogen. The present theoretical and numerical studies are
therefore motivated by the need for a better understanding of the thermal state in
a cryogenic gas tank. The natural convection in such cases of industrial storage is
characterized by flow patterns obtained at very high Rayleigh numbers. One can
hence expect stratification of the bulk, and thin buoyancy layers (sometimes refered
to as convective boundary layers, i.e. the thin region along the heated wall where the
fluid motion is generated).

The idealized tank configuration we study in the second part of the paper reveals
that thermal stratification is indeed achieved, and is characterized by a non-uniform
vertical thermal gradient. This nonlinear stratification arises from the fact that the bulk
thermal state depends on factors in addition to vertical conduction. This observation
(established by the numerical simulations described later) leads us to consider the
theoretical problem of a uniformly heated vertical plate immersed in a nonlinearly
stratified medium. This issue is analytically solved by deriving an approximate
solution, which appears as an extension of the classical solution ‘mountain and
valley winds in stratified air’ established by Prandtl (1952). The extension thus
considers a medium, the stratification of which admits a non-zero second-order
vertical derivative of its temperature profile. We then apply this new theory to
the practical case mentioned above. More precisely, the numerical computation of
the axisymmetrical natural convection in a cylindrical container is considered, and
the theoretical predictions are compared to numerical computations.

It has long been known that high-Rayleigh-number convection in an enclosure
driven by a vertical wall leads to stable thermal stratification of the cavity bulk. This
was observed in the numerous experimental results in Turner (1973). This feature
was also evident in the numerical results of Haldenwang (1986), and more recently in
numerical studies by Ravi, Henkes & Hoogendoorn (1994) on Prandtl number effects
for such a thermal stratification. The establishment of such stratification is often
preceded by the downward motion of a transient front that separates the recently
heated upper bulk from the initial cool environment (see Baines & Turner 1969 when
the heat source is composed of plumes, and Hunt, Cooper & Linden 2001 for the
case of hot jets). Similar transient results are evident in the present numerical studies,
provided that the Rayleigh number is chosen sufficiently high. This article nevertheless
focuses on flows that have reached an overall steady state, the properties of which
are related to free convection on walls immersed in a thermally stratified medium.

This problem has received substantial attention in literature, because numerous
geophysical and oceanic convective flows also occur in various stratified media. The
seminal analytical solution of Prandtl (1952), ‘mountain and valley winds in stratified
air’, supplies the exact solution for natural convection along a slope that is maintained
with a constant temperature excess with respect to the outer air linear stratification.
A plane parallel flow is generated along the slope, exhibiting flow reversal and
temperature defect, both of which have appeared much later as characteristics of
convection in a stratified medium, as e.g. shown in Tanny & Cohen (1998).

The problem of a vertical wall immersed in a thermally stratified environment
has also been considered in the context of certain similarity solutions that lead
to a set of ordinary differential equations. In that framework, particular cases of
temperature excess at the wall and stratification profiles have been investigated
by Yang, Novotny & Cheng (1972). The case of an isothermal wall immersed in
a particular polynomial profile of thermal stratification was solved in Kulkarni,
Jacobs & Hwang (1987). The approach was extended to more general fixed wall
temperatures by Henkes & Hoogendoorn (1989). A recent contribution by Tao,
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Le Quéré & Xin (2004) supplied a similarity solution for prescribed linearly increasing
temperatures as both wall and bulk boundary conditions. For the case of uniform
heat flux, as studied in the present contribution, Jaluria & Gebhart (1974) found a
theoretical similarity solution, provided that the ambient stratification varies like z1/5,
where z is the vertical (or downstream) coordinate. Sundstrom & Kimura (1996) found
an analytical solution that describes the plane parallel convection occurring between
two inclined parallel heated walls which create a constant stratification. The classical
related problem of the unsteady buoyancy flow induced in response to a suddenly
imposed plate heat flux was recently revisited by Shapiro & Fedorovich (2004a, b).
Finally, note that most of those analytical or analytical/numerical steady solutions
have been the subject of stability analysis (see Gill & Davey (1969), Krizhevsky,
Cohen & Tanny (1996), Sundstrom & Kimura (1996), Tao et al. (2004)).

The present contribution endeavours to derive an analytical expression that supplies
an approximate solution to the Boussinesq equations. The validity of this approach
is expected to hold in the limit RaS → ∞, where RaS is the Rayleigh number that
characterizes the nonlinear stratification. The thermal boundary conditions at the
immersed wall are of uniform-heat-flux type and any form of stable stratification is
allowed in the bulk (if RaS is large enough). We note that the present analysis extends
the Prandtl solution and the similarity solution of Jaluria & Gebhart (1974) to the
general case of nonlinear stratification.

Section 2 is devoted to the analytical approach, which is intended to solve the
Boussinesq equations with the boundary conditions suitable for the present problem
of natural convection in a stratified medium. The ‘mountain and valley winds in
stratified air’ solution by Prandtl (1952) is first evoked, and we show how it can provide
intuition related to our analysis. We then develop the analytical approach, which takes
advantage of the scale separation between horizontal and vertical variations in the
buoyancy layer. Finally, we discuss the validity of this approximate solution.

Section 3 presents an analysis of a storage tank as a practical application of
the theory. We first give a brief overview of the high-accuracy numerical method
that we developed for solving the Boussinesq equations in a cylindrical geometry
with axisymmetrical assumptions. We then report on a set of numerical data for a
large range of Ra = gα φ0 R4/νκλ, (where the symbols are defined in § 2.1) the cavity
Rayleigh number (i.e. 107 < Ra < 1012), where we note the thermal stratification of
the bulk medium, a characteristic that allows us to apply our theory. We relate the
stratification Rayleigh number (RaS) to the cavity Rayleigh number (Ra). Finally,
the quantitative predictions resulting from the present theory are compared to the
detailed numerical results. A satisfactory agreement is found for high Ra.

2. Analytical approach
2.1. Mathematical formulation

We consider steady flow adjacent to an infinite vertical plate, located at x = 0. This
wall provides the stratified fluid with a uniform horizontal heat flux, φ0. The fluid
medium occupies the semi-infinite bi-dimensional domain

Ω = {0 < x < ∞} × {−∞ < z < ∞}. (2.1)

The governing equations are chosen within the framework of the Boussinesq–
Oberbeck approximation: the fluid has uniform density ρ0 except for the buoyancy
force. We denote as V the velocity, T the temperature, and P the pressure departure
from the hydrostatic pressure related to the constant density fluid. Furthermore,
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we define ν, κ , α and g, as the fluid kinematic viscosity, thermal diffusivity, thermal
expansion coefficient, and gravitational acceleration, respectively. The set of governing
equations is

∇ · V = 0 in Ω, (2.2)

∇V · V = −∇
(

P

ρ0

)
+ ν�V + αgT ez in Ω, (2.3)

∇T · V = κ�T in Ω, (2.4)

together with the boundary conditions

V (x = 0, z) = 0, V (x = ∞, z) = 0, (2.5)

∂T

∂x
(x = 0, z) = −φ0

λ
, T (x = ∞, z) = Ts(z), (2.6)

where λ is the thermal conductivity and Ts(z) is the prescribed temperature profile in
the stratified medium. Ts(z) is a general function of z, the first derivative of which
is assumed to be positive, while the second derivative may differ from zero, i.e. a
nonlinear thermal profile in the bulk.

2.2. The Prandtl exact solution ‘mountain and valley winds’

In 1952, L. Prandtl gave an exact solution to the problem of an infinite vertical
plate immersed in a linearly stratified fluid, i.e. characterized by a uniform thermal
vertical gradient in the bulk (see the discussion in Gill 1966 for possible applications
in enclosures). The temperature profile prescribed far from the plate is T (x = ∞, z) =
Ts(z) = ψ0z/λ, where ψ0 is the vertical heat flux through the stratified bulk. The plate
has a linearly varying temperature T (x = 0, z) = ψ0z/λ+�T , which differs from that
of the bulk by the uniform temperature increment �T . Prandtl found a solution in
the form of a plane parallel flow such that

T (x, z) = Ts(z) + θ(x), (2.7)

V (x, z) = Vz(x) ez, (2.8)

with

θ(x) = θ0 exp

(
−x

l0

)
cos

(
x

l0

)
, (2.9)

Vz(x) = V0 exp

(
−x

l0

)
sin

(
x

l0

)
, (2.10)

and where

l0 =

(
4νκλ

ψ0αg

)1/4

, (2.11)

θ0 = �T, (2.12)

V0 =
κψ0

λ�T

(
αgλ3�T 4

κνψ3
0

)1/2

(2.13)

are respectively the boundary layer thickness, the thermal departure at the wall, and
the strength of convection motion.

This exact solution is identical to the solution of the problem with prescribed
thermal flux at the plate. The heat flux supplied by the plate is −λ dθ(x = 0)/dx =
λ�T/l0, and therefore admits a uniform value. Then, equating λ�T/l0 with φ0, the
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thermal departure and the convective velocity strength can be rewritten as

θ0 =
√

2
φ0l0

λ

(
αgψ0l

4
0

νκλ3

)−1/4

=

(
φ0

ψ0

)1/4 (
4νκφ3

0

λ3αg

)1/4

, (2.14)

V0 =
√

2
κ

l0

(
αgψ0l

4
0

νκλ3

)1/4
φ0

ψ0

=

(
φ0

ψ0

)3/4 (
4αgκ3φ0

νλ

)1/4

. (2.15)

Our intent is to extend these expressions at fixed flux by deriving an approximate
solution in the case of a nonlinearly stratified medium, i.e. with a non-constant
thermal gradient dTs(z)/dz �= ψ0/λ. This extension will appear as a simple adaptation
of the quantity ψ0 contained in (2.11) and (2.14)–(2.15).

2.3. An approximate solution for nonlinear stratification

We now develop an approximate analytical approach to the problem of free convection
induced by uniform heating φ0 along a vertical infinite plate in a medium, the
stratification of which is Ts(z). The vertical gradient is the non-constant quantity T ′

s (z)
with T ′

s > 0 (i.e. the medium is assumed to be stable). We postulate that the order of
magnitude of the vertical heat flux that crosses the medium, denoted Ψ0, is such that

dTs(z)

dz
= O

(
Ψ0

λ

)
. (2.16)

Since the stratification is assumed to be nonlinear, d2Ts(z)/dz2 is non-zero. We denote
the typical magnitude of these non-zero values as || d2Ts(z)/dz2 ||. Hence, we can now
define Z0, the typical variation length of nonlinear stratification, as

Z0 ≡ Ψ0

λ

����d2Ts

dz2

����
−1

. (2.17)

Let us first comment that Z0 tends to infinity as the stratification becomes linear.
As a result, Z0 is an additional length scale, which characterizes the deviation from
linearity in the temperature profile. In what follows, Z0 is conceived as a length scale,
which is large compared with l0, the typical thickness of the convection boundary
layer.

This idea of length scale separation motivates us to introduce {ξ, ẑ}, a new set of
dimensionless variables defined as

ξ (x, z) ≡ x

Z0δ(ẑ)
, ẑ ≡ z

Z0

. (2.18)

If δ(ẑ) is a small quantity (to be characterized later), the new variable ξ allows us to
focus on the zone close to x = 0, where the convective boundary layer is localized,
its thickness assumed to be of the order of Z0δ(ẑ) (with | δ |	 1 ). The two original
partial derivations are then expressed as

∂

∂x
=

−1

Z0δ

∂

∂ξ
,

∂

∂z
=

1

Z0

(
∂

∂ẑ
− ξ

δ

dδ

dẑ

∂

∂ξ

)
. (2.19)

In this context, all space derivatives of any quantity will keep the same dimension
as the original quantity, the new space variables being dimensionless. Furthermore,
to avoid introducing numerous new non-dimensional unknowns, in what follows
we only make dimensionless the stratification temperature. The reason is that only
the magnitudes of stratification scale and gradient are needed for constructing the
forthcoming Rayleigh number of stratification. Additionally, we anticipate that any
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function of ẑ has a slow variation: for example, we postulate that δ′ ≡ dδ/dẑ =
O(δ). We now look for an approximate solution in the mathematical framework of
separation of variables. To do this we postulate that the temperature field satisfies
the following form:

T (x, z) =
Ψ0Z0

λ
T̂s(ẑ) + θ(ξ )τ (ẑ), (2.20)

where θ(ξ ) and τ (ẑ) are two functions whose scale of variation is O(1). T̂s(ẑ) is the
imposed stratification profile made dimensionless for the sake of future simplification
of the notation. For the vertical component of velocity, we can similarly assume the
form

Vz(x, z) = V (x, z) · ez = V (ξ )γ (ẑ). (2.21)

As for the pressure field, we similarly postulate

P (x, z) = −
∫

αgρ0

Ψ0Z
2
0

λ
T̂s(ẑ) dẑ + p(ξ )π(ẑ), (2.22)

where the first term of the right-hand side is simply the next order of the hydrostatic
pressure variation in the stratified bulk. In accordance with the above assumptions, our
purpose is now to convert expressions (2.20)–(2.22) into steady Boussinesq equations
and to develop that system at the lowest order in δ.

We first derive Vx , the transverse component of velocity, from the incompressibility
constraint. This yields

1

Z0δ

∂Vx

∂ξ
+

V

Z0

dγ

dẑ
− ξ

Z0δ

dδ

dẑ

∂V

∂ξ
γ = 0. (2.23)

After partial integration of ∂Vx/∂ξ , we get

Vx(ξ, ẑ) = u(ξ )
dδ

dẑ
(ẑ)γ (ẑ) − v(ξ )δ(ẑ)

dγ

dẑ
(ẑ) (2.24)

with

u(ξ ) =

∫ ξ

0

ξ
dV

dξ
dξ, (2.25)

v(ξ ) =

∫ ξ

0

V dξ. (2.26)

Note that dV (ξ )/dξ , u(ξ ) and v(ξ ) are of the same order as V (ξ ), defined in equation
(2.21). Therefore, since γ (ẑ) and dγ (ẑ)/dẑ are also of the same order, (2.24) indicates
that |Vx | = O(δ)|Vz|. We retrieve the classical property that in a boundary layer, the
transverse and streamwise velocities are of different magnitudes. We now turn our
attention to the vertical momentum equation. Its advection terms are

Vx

∂Vz

∂x
=

[
u(ξ )

dδ

dẑ
γ (ẑ) − v(ξ )δ

dγ

dẑ

]
∂V (ξ )

∂ξ

γ (ẑ)

δZ0

, (2.27)

Vz

∂Vz

∂z
=

V (ξ )γ (ẑ)

δZ0

[
δV

dγ

dẑ
− ξ

dδ

dẑ

dV (ξ )

dξ
γ

]
. (2.28)

The terms have to be compared with the diffusion term, the leading order of which
is easily established as

ν�Vz =
ν

(δZ0)2
d2V

dξ 2
(ξ )γ (ẑ) + O

(
ν

Z2
0

V γ

)
. (2.29)
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A comparison between (2.27)–(2.28) and (2.29) leads us to neglect both advection
terms compared to diffusion if the following assumptions hold:⏐⏐⏐⏐δ

dδ

dẑ
γ

⏐⏐⏐⏐Z0

⏐⏐⏐⏐V
dV

dξ

⏐⏐⏐⏐ 	 ν
d2V

dξ 2
,

⏐⏐⏐⏐δ2 dγ

dẑ

⏐⏐⏐⏐Z0

⏐⏐⏐⏐V 2

⏐⏐⏐⏐ 	 ν
d2V

dξ 2
. (2.30)

These hypotheses will be checked with respect to the final result. This corresponds to
the fact – often met in convection with moderate or large Prandtl number – that the
convection boundary layer is established to compensate buoyancy by viscous effects.

Expressions (2.20)–(2.22) are now incorporated into the vertical-momentum
conservation law of the steady Boussinesq equations. Keeping the lowest-order terms
in δ, we obtain the following ordinary differential equation:

ν

αgZ2
0

1

θ(ξ )

d2V

dξ 2
= −C1 = −δ2(ẑ)

τ (ẑ)

γ (ẑ)
(2.31)

where C1 is a positive dimensionless constant. As for the heat equation, we establish
the following similar estimates for the advection terms:

Vx

∂T

∂x
=

[
u(ξ )

dδ

dẑ
γ (ẑ) − v(ξ )δ

∂γ

∂ẑ

]
dθ(ξ )

dξ

τ (ẑ)

Z0δ
, (2.32)

Vz

∂T

∂z
=

V (ξ )γ (ẑ)

Z0

[
Z0Ψ0

λ

dTs

dẑ
+

1

δ

(
θδ

dτ

dẑ
− ξ

dδ

dẑ

dθ

dξ
τ (ẑ)

)]
. (2.33)

The nonlinear terms of heat advection have to be compared with the temperature
diffusion terms, the leading order of which is obviously supplied by

κ�T =
κ

(Z0δ)2
d2θ

dξ 2
(ξ )τ (ẑ) +

κΨ0

Z0

d2T̂s

dẑ
+ O

(
κ

Z2
0

θτ

)
. (2.34)

At this point, we formulate the following five additional hypotheses of calculation,
that have also to be checked against the final result:⏐⏐⏐⏐1

δ

dδ

dẑ

dθ

dξ
τ

⏐⏐⏐⏐ 	 Ψ0Z0

λ

⏐⏐⏐⏐dT̂s

dẑ

⏐⏐⏐⏐,

⏐⏐⏐⏐θ
dτ

dẑ

⏐⏐⏐⏐ 	 Ψ0Z0

λ

⏐⏐⏐⏐dT̂s

dẑ

⏐⏐⏐⏐, (2.35)

Ψ0Z0

λ

⏐⏐⏐⏐d2T̂s

dẑ2

⏐⏐⏐⏐δ2 	
⏐⏐⏐⏐d2θ

dξ 2
τ

⏐⏐⏐⏐, (2.36)

⏐⏐⏐⏐δ
dδ

dẑ
γ

⏐⏐⏐⏐Z0

⏐⏐⏐⏐V
dθ

dξ

⏐⏐⏐⏐ 	 κ
d2θ

dξ 2
,

⏐⏐⏐⏐δ2γ
dτ

dẑ

⏐⏐⏐⏐Z0

⏐⏐⏐⏐V θ

⏐⏐⏐⏐ 	 κ
d2θ

dξ 2
. (2.37)

The two hypotheses (2.35) allow us to keep the stratification gradient as the leading
order of temperature gradient, while assumption (2.36) leads us to neglect vertical
heat conduction with respect to horizontal conduction in the convection layer. The
last two assumptions (2.37) permit us to neglect two additional advection terms.
Consequently, if the five hypotheses (2.35)–(2.37) hold (see the discussion at the end
of the present section), we reduce the heat equation to the following second-order
ordinary differential equation:

dT̂s(ẑ)

dẑ
δ2 γ (ẑ)

τ (ẑ)
= C2 =

κλ

Ψ0Z
2
0

1

V (ξ )

d2θ(ξ )

dξ 2
(2.38)
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where C2 is a dimensionless constant. Then, from equations (2.31) and (2.38) we easily
derive the following fourth-order differential equation for V (ξ )

V (4) + 4β4V = 0 (2.39)

where β is the dimensionless constant

β =
1√
2
[C1C2RaS]

1/4 =
1√
2
δ(ẑ)

[
dT̂s

dẑ
RaS

]1/4

(2.40)

and RaS , the Rayleigh number relative to nonlinear stratification, is defined as

RaS =
αgΨ0Z

4
0

κνλ
. (2.41)

The general bounded solution of (2.39) with zero value at ξ = 0 is

V (ξ ) = V0 e−βξ sinβξ (2.42)

and yields the temperature field

θ(ξ ) = θ0 e−βξ cos βξ (2.43)

with the following relationship between the amplitudes:

θ0/V0 = C2Ψ0Z
2
0/

(
2κλβ2

)
= 2β2ν/

(
C1αgZ2

0

)
. (2.44)

Expression (2.43) has to satisfy the boundary condition corresponding to a fixed heat
flux at x = 0, i.e.

−λτ (ẑ)

Z0δ

∂θ

∂ξ

⏐⏐⏐⏐
ξ=0

= φ0. (2.45)

We hence obtain from (2.43) and (2.40)

θ0τ (ẑ) =
Z0φ0

λ

δ

β
=

√
2
Z0φ0

λ

[
dT̂s

dẑ
RaS

]−1/4

(2.46)

and from (2.38)

V0γ (ẑ) =

√
2κ

Z0

φ0

Ψ0

Ra
1/4
S

[
dT̂s

dẑ

]−3/4

. (2.47)

Coming back to dimensional quantities, orders of magnitude Ψ0 and Z0 disappear in
(2.46) and (2.47), and the result is

θ0τ (ẑ) =

(
φ0

λT ′
s

)1/4 (
4νκφ3

0

λ3αg

)1/4

, (2.48)

V0γ (ẑ) =

(
φ0

λT ′
s

)3/4 (
4αgκ3φ0

νλ

)1/4

. (2.49)

Note the close similarity with (2.14) and (2.15). It remains to supply the expression
of βξ as a function of the primitive variables. From (2.40) we easily establish that

βξ =
x

l(z)
(2.50)
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with

l(z) =

(
4κν

αgT ′
s

)1/4

. (2.51)

We remark that the convection boundary layer now has a varying thickness, the form
of which can easily be connected with (2.11).

To summarize the results of the present analysis, we may write the approximate
solution as

T (x, z) = Ts(z) +

(
φ0

λT ′
s (z)

)1/4 (
4νκφ3

0

λ3αg

)1/4

exp(−x/l(z)) cos(x/l(z)), (2.52)

Vz(x, z) =

(
φ0

λT ′
s (z)

)3/4 (
4αgκ3φ0

νλ

)1/4

exp(−x/l(z)) sin(x/l(z)). (2.53)

By setting T ′
s (z) = ψ0/λ, we recover the Prandtl solution (2.7)–(2.8) complemented

with expressions (2.11), (2.14) and (2.15). To complete this analysis, we now discuss
the hypotheses formulated during our derivation. We first note that expressions (2.52)
and (2.53) have the same dependence on z as that of dTs(z)/dz. Second, we observe
that δ, the small parameter related to the boundary layer thickness, behaves like
l(z)/Z0 or like Ra

−1/4
S , the Rayleigh number of nonlinear stratification as defined in

(2.41). In other words, our expansion in δ is valid when RaS is large. This general
feature can be more directly confirmed by inspecting the respective magnitudes of the
differential quantities. Thus, taking account of the final results (2.53), a straightforward
calculation shows that conditions (2.30) are valid if Ra

−1/4
S 	 Pr with Pr = ν/κ . On

the other hand, the same procedure regarding conditions (2.35) and (2.37) supplies the
validity condition Ra

−1/4
S 	 1. Assumption (2.36) can be rewritten as Ra

−1/4
S 	 φ0/Ψ0.

These conditions show that a large Rayleigh number of nonlinear stratification is
required to ensure accuracy of the results. To sum up, three conditions of validity are
required, which can be written in the following compact form:

Ra
−1/4
S 	 min

{
1, P r,

φ0

Ψ0

}
. (2.54)

These conditions are consistent with the exactness of the Prandtl solution. Namely,
when the stratification becomes linear, Z0 tends to infinity, as does RaS . Consequently,
our approximate solution (2.52) and (2.53) tends continuously towards the exact
solution. The present analytical solution also has two important characteristics of
free convection in a stratified medium (see Tanny & Cohen 1998): flow reversal and
temperature defect.

3. Application to a storage tank of liquefied gas
Our purpose is now to show that nonlinear stratification can occur in practice,

and that our theory may be successfully applied to such a situation. The practical
configuration that we consider is liquefied gas storage in a cylindrical tank. The
cylinder is filled with a pure substance (e.g. hydrogen), and at its bottom is a thin
liquid layer of the substance. The motion in the liquid layer is assumed to be
negligible to focus on the natural convection arising in the vapour. Therefore, the
tank is assumed to contain a unique gaseous species, the Prandtl number of which
is Pr = 0.71. The part played by the liquid phase is restricted to maintaining the
vapour at a given temperature at z = 0, the cylinder bottom (i.e. the liquid–vapour
interface). R is the cylinder radius, H is the height of the zone occupied by the
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φ0

φ0

φ0

R

T = 0

Figure 1. Sketch of the vapour part in a liquefied gas storage tank containing a thin liquid
layer at the bottom. 107 � Ra ≡ gαφ0R

4/νκλ � 1012; Pr ≡ ν/κ = 0.71; 0.25 � A ≡ H/R � 1.
g, gravity acceleration; α, thermal expansion coefficient; φ0, imposed uniform flux; ν, kinematic
viscosity; κ , thermal diffusivity; λ, heat conductivity.

vapour phase, and A = H/R is the aspect ratio of the vapour zone. We study three
values of A (A = 0.25, 0.5 and 1) with a particular interest in the practical case
A = 0.25, although this aspect ratio is less easy to apply the theory, since – as
mentioned below – the convective boundary layer is less developed for A = 0.25. The
thermal boundary conditions are modelled as follows: the vapour cylinder has the
liquid–vapour coexistence temperature at its bottom, set to T0 = 0, while at the other
cylinder walls the vapour receives φ0, a uniform constant heat flux (an hypothesis
that can be expected for a low-temperature storage). The validity of this hypothesis
depends on the magnitude of the vapour temperature variations at the walls. We
additionally neglect the gas flow rate resulting from vaporization. In the concluding
discussion, we shall link both assumptions to two conditions of good insulation that
the storage has to fulfil.

A sketch of the system studied is presented in figure 1 where the parameters
of the configuration are illustrated. The natural convection is assumed to satisfy the
Boussinesq approximations. Note that the Boussinesq equations in a cryogenic system
(especially with hydrogen) correspond to a quite demanding approximation, because
it requires, among other things, that all temperature variations in the cavity be small
compared with the mean absolute temperature.

We are interested in high-Rayleigh-number convection, and we focus on steady
axisymmetric flows, for which our theory can operate. The following time-dependent
approach will find steady flows up to very high Rayleigh numbers. These flows are
hence found stable with respect to two-dimensional perturbations, but a stability
study for three-dimensional perturbations was not carried out in the present work;
this remains to be checked in future work, because if three-dimensionality should
occur, it might drastically restrict the application domain (in the high Rayleigh
numbers) of our theory. Therefore, for the time being, we simply state: if a stable
axisymmetric solution exists at high Rayleigh number in the tank, the analytical
expressions (2.51)–(2.53) then supply acceptable predictions of the flow. Finally, note
that the vaporization from the liquid layer at steady state extracts from the vapour
the latent heat flux that exactly equilibrates the heat flux received from outside.

3.1. Mathematical formulation and numerical procedure

The coupling between the vapour dynamics and the thermal state is now solved
within the framework of the unsteady Boussinesq equations. Let Ωc be the cavity
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domain and Γ = Γ+ ∪ Γ−, its boundary; Γ+ stands for the lateral wall (r = R)
plus the top wall z = H , and Γ− corresponds to the liquid/vapour interface at
z = 0. In accordance with our axisymmetrical assumptions, we denote the cylindrical
directions (er , ez) respectively the radial and vertical directions. The variables used
for non-dimensionalization are the cylinder radius R and the time scale R2/κ , where
κ is the thermal diffusion coefficient. The temperature (i.e. the departure from bottom
temperature) is normalized by Rφ0/λ, where λ is the thermal conductivity. Pressure
and velocities are then normalized with suitable combinations of space–time and
weight units (the latter is derived from ρ0, the fluid mean density). Under these
standard conventions, the non-dimensional parameters are the Prandtl and cavity
Rayleigh numbers, Pr = ν/κ and Ra = (gαφ0R

4)/(νκλ), respectively.
In the resulting non-dimensional domain Ωc =]0, 1] × [0, A], we now have the

following set of reduced equations:

∇ · V = 0 in Ωc, (3.1)

∂V
∂t

+ ∇V · V = −∇
(

P

ρ0

)
+ Pr�V + PrRaT ez in Ωc, (3.2)

∂T

∂t
+ ∇T · V = �T in Ωc, (3.3)

with the associated boundary conditions

V = 0 on Γ = Γ− ∪ Γ+, (3.4)

T = 0 on Γ− and
∂T

∂n
= 1 on Γ+, (3.5)

where V denotes the non-dimensional velocity, T the non-dimensional temperature
departure from the temperature of liquid/vapour equilibrium, and P the non-
dimensional pressure departure from the hydrostatic pressure of a medium with
density unity.

For the initial conditions, the computation is as follows. For the first run, the
computation is performed with a relatively small Rayleigh number (say, Ra = 103),
while the fluid is initially assumed to be at rest and the temperature is set to zero. Time
integration is performed until steady state is reached. All the solutions we consider
here are stationary (e.g. steady states are obtained up to Ra = 1012 for A = 0.25).
Then, the subsequent computations are performed with regularly increasing Ra. Each
computation uses the previous (steady) solution as the initial condition.

The numerical computation of system (3.1)–(3.5) requires a precise description of
the convective boundary layer. At high Rayleigh number, however, it corresponds
to a small length scale (the buoyancy layer thickness). Hence, the numerical method
selected is of a spectral-type in space, and developed for the cylindrical geometry. A
semi-implicit time discretization of second-order time accuracy is used; it corresponds
to the second-order backward implicit Euler scheme, associated with an explicit
Adams–Bashforth scheme for the nonlinear terms, and an implicit treatment for the
viscous and diffusive terms. At each new discretized time tn+1 = (n + 1)�t (�t being
the time step), we solve successively a Helmholtz elliptic problem for the temperature
and the following generalized Stokes problem for velocity and pressure:

∇ · V n+1 = 0 in Ωc, (3.6)

−Pr (�V )n+1 +

(
3V
2�t

)n+1

+ ∇P n+1 = Sn,n−1
V in Ωc, (3.7)
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Figure 2. Illustration of the spectral exponential convergence of numerical errors, expressed
as L∞ and L2 norms. For an N × N Chebyshev expansion, the errors are computed with
respect to the solution with N = 160, and are plotted versus N .

where Ωc denotes the closure of Ωc, and Sn,n−1
V is the source term which only depends

on quantities already known at previous time steps. This problem is associated with
no-slip boundary conditions on Γ .

To solve this problem with a high spatial accuracy, we use a Chebyshev–Chebyshev
collocation method in cylindrical geometry such as developed by Le Marec, Guerin &
Haldenwang (1996) for both two- and three-dimensional cases. Such a technique
has long been known (see e.g. Gottlieb & Orszag 1977, Canuto et al. 1988 and
Peyret 2002), to provide an exponentially decreasing error in space, once the exact
solution is highly regular. Although the pressure treatment in the three-dimensional
version of our approach uses a preconditioned Uzawa algorithm, cf. Garba &
Haldenwang (2003), the present two-dimensional version uses the influence matrix
technique, as described in Le Quéré & Alziary de Roquefort (1985) and Forestier
et al. (2000), which appeared to be more suitable here (albeit restricted to two-
dimensional computations). Subsequent elliptic sub-problems are solved using the
partial diagonalization technique, as proposed in Haldenwang et al. (1984).

Regarding the precision we achieved, the accuracy of the steady solutions is checked
as follows. Let us denote by TM,N , the numerical temperature field computed using
M [resp. N] Chebyshev polynomials in the radial [resp. vertical] direction. The
computations were conducted for two sets of parameters, representative of the range
of parameters studied: (Ra = 109, A = 0.25) and (Ra = 1011, A = 0.25). In both
cases, a reference solution has been computed with a large expansion in Chebyshev
polynomials (say, N = M = 160). For less accurate expansions, the error with respect
to the reference solution is then calculated in two norms: the L2 norm, defined as

{
∫

Ωc

(
TN,N − T160,160

)2
2πrdrdz}1/2, and the L∞ norm, defined as Max | TN,N −T160,160 |

in Ωc. For both sets of parameters, the error norms have been plotted in figure 2 as a
function of N , the number of Chebyshev polynomials selected in both directions. We
observe that the regime of exponential convergence is achieved for both solutions. This
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Figure 3. Isotherms for A = 1 with (a) Ra = 103 and (b) Ra = 107; temperature is
normalized with φ0R/λ.

indicates that all physical length scales are accurately resolved (see e.g. Gottlieb &
Orszag 1977 and Canuto et al. 1988). Note in figure 2 that the L2 norm (being an
integrated quantity) indicates an error about two decade more accurate than the
L∞ norm, while the precision is independent of Ra when the regime of exponential
convergence is attained. In practice, we chose the double Chebyshev expansion large
enough to obtain a 4-digit point-wise precision in the range studied: for instance, this
accuracy is achieved with M = 130 and N = 120 for the particular case (Ra = 1011,
A = 0.25), while the time integration uses the time step �t = 5 × 10−7.

3.2. Qualitative description of the convection in the tank

The Prandtl number is set to Pr = 0.71; the numerical study is conducted with respect
to the two other parameters. More precisely, we present results for three different
aspect ratios: A = 1, A = 0.5 and A = 0.25; the upper bound on the Rayleigh
number can be chosen as large as Ra = 1012 for A = 0.25. For large enough Rayleigh
numbers, a thermal boundary layer develops along the lateral wall, and it becomes
thinner as Ra increases. This is clearly observed in figures 3(a) and 3(b), which plot
the isotherms at Ra =103 and Ra = 107 respectively, for A= 1. Both figures exhibit a
certain amount of stratification of the bulk. Furthermore, we observe in figure 3(b)
the nonlinearity of the stratification: the isotherms, which correspond to regularly
distributed temperatures, are not equally spaced in the cavity.

Further inspection of the tank’s thermal state for various pairs of parameters
indicates that the maximum temperature of the vapour in the tank decreases with
increasing Rayleigh number. This maximum temperature seems to tend at very high
Ra to the asymptotic reduced value A(1+A), as indicated in figure 4, where TMax , the
maximum temperature found in the cavity, is plotted with respect to Rayleigh number
for different tank aspect ratios. We now turn to the characteristics of the stationary
motion. Figure 5 presents the streamlines for three aspect ratios A= 0.25, 0.5 and
1, the Rayleigh number being set to Ra = 107. The streamline patterns indicate that
the ascending flow is localized in a vertical boundary layer close to the lateral wall,
where we have previously observed the deviation from stratification in figure 3. Both
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Figure 5. Streamlines at Ra = 107 for aspect ratios (a) A = 0.25, (b) A =0.5 and (c) A = 1.

thermal (figure 3) and dynamical (figure 5) patterns comprise the convective boundary
layer, which has two feed sources: from below and from the bulk, as indicated by the
trajectories for A= 0.5 and A= 1. At Ra = 107 these general features are not clear for
A= 0.25, because the convective layer thickness is a length scale not much smaller
than the tank height. In this case, an increase in Rayleigh number is needed to ensure
a marked separation of the two scales (cavity height and convection layer thickness).

We consider in more detail figure 5(c) (i.e. the streamline patterns for A= 1) which
is representative of the flow field at high values of Ra. On the bottom part of the
third and fourth streamlines (starting from the walls), we note a V-shape pattern (this
can also be guessed for the second and fifth streamlines in the same figure). This
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particular form indicates that – starting from the lateral wall – there is an ascending
flow that grows from zero to a maximum, and then decreases until the flow becomes
downward. The V-shape pattern is thus the illustration on streamlines of the flow
reversal we have mentioned already.

3.3. Characterization of the bulk nonlinear stratification

The tank configuration studied here illustrates clearly that high-Rayleigh-number
convection induces thermal stratification of the bulk. The present case differs from
the situation frequently reported in the literature however, which concerns a linearly
stratified medium (i.e. with a uniform vertical temperature gradient). This departure
from the standard situation can be explained by the following simple analysis of the
energy balance in the tank in steady state.

From the lateral and top surfaces, the tank receives the thermal power πR2(1+2A)φ0

which exactly supplies the power required by the vaporization at the liquid–vapour
interface. If we suppose that heat transfer at the interface is uniform (as suggested
by figure 3(b) where the stratification seems to reach the interface), we deduce that
the thermal flux at the interface is (1 + 2A)φ0. On the other hand, assuming that
stratification is also effective up to the top of the tank, the thermal gradient has to
match with φ0/λ. The simplest vertical temperature profile that satisfies both boundary
conditions is the quadratic profile, written in non-dimensional form as

Ts(z) = (1 + 2A)z − z2. (3.8)

Equation (3.8) results from the simple rationale that the stratification profile has to
fit with the non-uniform fluxes that must vertically cross the cavity at high Rayleigh
number. On the other hand, the maximum temperature found numerically is located
at the top of the cavity and its value is found to be in agreement with this rationale,
since equation (3.8) takes the value A(1+A) at z =A, which is close to the asymptotic
values observed in figure 4. This heuristic approach has to be validated quantitatively
by inspecting the numerical data.

We first define ΩB = ]0, 0.9] × [0.1, 0.9A] as a sub-domain that excludes a layer
along all boundaries. Obviously, ΩB plays the role of the bulk mentioned in the
previous theoretical section. The temperature discrepancy between the bulk numerical
temperature field and the one given by equation (3.8) is measured in the L∞(ΩB) norm
[i.e. Max | T (r, z) − Ts(z) | in ΩB], and is plotted in figure 6 with respect to Ra for the
three values of A= 0.25, 0.5 and 1. We observe that all the computed departures from
equation (3.8) more or less fit with the curve 0.8Ra−1/7. As Rayleigh number increases,
we note that bulk stratification becomes closer to equation (3.8) and conclude that,
for A= 0.25, the departure from stratification (3.8) is very weak in the upper range
of Rayleigh numbers (say Ra > 109). The curve 0.8Ra−1/7 has been obtained by fit of
the departures, and for the time being we are unable to propose an explanation for
the deviation from stratification. Nevertheless, we are in position to claim that the
fluid bulk has the nonlinear stratification given in (3.8) within a precision of a few
per cent in the upper range of Rayleigh numbers.

Hence, we can now apply our theory. To anticipate the precision, we have to estimate
the value of RaS , the Rayleigh number of nonlinear stratification, in this application.
We compute its expression with respect to the tank parameters. The heat flux that
crosses the stratified bulk varies between φ0 and (1+2A)φ0. We choose Ψ0 = (1+A)φ0

as its order of magnitude. The second derivative of the stratified temperature field
equals −2φ0/(λR) from equation (3.8). Hence the typical length scale of nonlinear
stratification can be set to Z0 = R(1 + A)/2. Consequently, we obtain the following
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relationship between RaS and Ra:

RaS = 2Ra

(
1 + A

2

)5

. (3.9)

Since RaS is proportional to Ra, we can expect a satisfactory application of our theory
for high-Ra convection. We nonetheless note that the vertical tank wall is not infinite,
and therefore some discrepancies between the numerical and analytical approaches
should arise due to the following features: (a) the vertical velocity vanishes at both
vertical ends of the boundary layer, and (b) the flow enters the convective layer with
an inlet transverse pattern different from that of a convective layer. Despite these
disparities, we nevertheless observe numerous common properties between numerical
and analytical predictions.

3.4. Comparison between theory and numerical simulation

Using the tank parameters in equations (2.52) and (2.53), we rewrite the theoretical
solution with respect to the variables describing the tank, and obtain

T (r, z) = (1 + 2A)z − z2 +
cos[(1 − r)/l(z)]e−[(1−r)/l(z)]

[1 + 2A − 2z]1/4

√
2

Ra1/4
, (3.10)

Vz(r, z) =
√

2
sin[(1 − r)/l(z)]e−[(1−r)/l(z)]

[1 + 2A − 2z]3/4
Ra1/4, (3.11)

with

l(z) =
√

2[1 + 2A − 2z]−1/4Ra−1/4. (3.12)

In equation (3.12) we note that the boundary layer thickness l(z) is an increasing
function of z. We recall that solution (3.10)–(3.11) describes the flow in the vicinity
of the lateral wall and is based on the validity of assumptions (2.54) for RaS . Since
here φ0/Ψ0 =O(1), the three conditions (2.54) roughly reduce to Ra−1/4 	 1. We
now carry out a comparison between numerical simulations and analytical approach
(3.10)–(3.11) for several sensitive values.
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Figure 7. Radial profiles of temperature departure from stratification Ts(z) at various vertical
coordinates; solid curves correspond to the analytical solution, and dotted curves to the
numerical simulation (A =0.25 and Ra = 3 × 1011); temperature is normalized with φ0R/λ.

With respect to the thermal field, we are faced with the following difficulty: the
numerical bulk temperature converges slowly (i.e. as Ra−1/7) to the stratification, while
the thermal departure from stratification on the wall decreases as Ra−1/4. Therefore,
we run the risk that the numerical thermal departure from stratification could be
disturbed.

The comparison first concerns the radial dependence of the two solutions: we
consider the radial profile of the temperature departure from thermal stratification, as
well as the radial profile of the ascending velocity. We then study the vertical profiles
of the two quantitie Tm(z) and Vm(z) which are, respectively, the thermal departure
along the lateral wall (where the radial profile of thermal departure is maximum) and
the maximum of the radial profile for the ascending velocity. Both vertical profiles
have in turn a maximum, which is localized in the vicinity of the cylinder ceiling (i.e.
for z = A). Then we compare their values predicted both numerically and analytically.
Most comparisons are for high Rayleigh number, say Ra =3×1011, and with A= 0.25.

3.4.1. Comparing the radial profiles

We focus first on the thermal departures from stratification with respect to the
radial temperature profiles. Figure 7 illustrates the temperature deviations from the
theoretical stratification Ts at three different vertical positions (i.e. bottom, mid and
top positions) in the vicinity of the buoyancy layer (i.e. close to the vertical wall). The
numerical data correspond to the dotted curves. In all cases, numerical and analytical
solutions agree well with respect to the temperature defect close to the wall: the
temperature departure from thermal stratification becomes negative just outside the
convective boundary layer. However, as can be observed on the left part of the two
dotted curves in figure 7, the temperature departure differs from zero in the bulk. In
other words, the numerical stratification differs slightly from Ts . This possibility was
mentioned above. This weak discrepancy disturbs the departure profile by shifting the
numerical temperature field above the analytical one slightly. This feature nonetheless
preserves the qualitative agreement between the two approaches: (a) the boundary
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curves to the numerical simulation (A = 0.25 and Ra = 3 × 1011); temperature is normalized
with φ0R/λ.

layer thickness that results from numerical data increases with z, (b) the temperature
departure also increases with the vertical position.

We now alter the definition of the numerical departure profiles to the deviation from
the actual numerical stratification in the bulk (instead of Ts(z)), and plot in figure 8,
which compares the same quantities as in figure 7. We observe that the agreement is
very good at the top of the wall, where both numerical and analytical curves almost
coincide. At the bottom part of the wall, the agreement is quite poor however, while
it is only just satisfactory in the mid position. The reason is undoubtedly the presence
of a corner at the wall bottom, and the fact that the flow starts its ascending motion
with a thermal profile established previously in a complex boundary layer along the
liquid. The latter should tend to exaggerate the thermal layer thickness immediately
at the entrance. Quantitatively, we define η, the layer thickness, as η = 2(1 − rb),
where rb is such that θ(r = rb) = θ(r = 1)/2 = θmax/2. We estimate at about 25% the
discrepancy in boundary layer thickness at the bottom. This then reduces to 12%
at the mid cavity, and to 4% at the top of the layer. Apart from this noticeable
discrepancy in thermal layer thickness, a further quantitative comparison between the
two approaches is satisfactory: every pair of curves gives the same temperature at the
wall, as observed in figure 8.

We turn next to the vertical component of velocity, for which the validation is more
easily conducted, because we are now comparing two (numerical and analytical)
absolute values. Figure 9 shows the radial profiles of vertical velocity plotted at the
same vertical position. The agreement between analytical and numerical profiles is
very good, where the convective boundary layer is well established i.e. in the upper
half-cylinder. The discrepancy is acceptable in mid cavity. On the other hand, close to
the bottom (at z = 0.039) the boundary layer thickness from the numerical solution
is again too large in comparison with (3.11). This effect corresponds to the upstream
conditions which are quite far from the domain of applicability our theory. It is
noteworthy that both maxima of velocity at the bottom are nevertheless in close
agreement.
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To summarize this step of validation with respect to radial profiles, both numerical
and analytical approaches yield results that possess the two characteristics of the
convection on a vertical plate in a stratified medium: temperature defect and flow
reversal. The agreement between numerical and analytical solutions for the radial
dependence is excellent in the upper part of the vertical wall, acceptable in mid
cavity, and poor at the bottom. The main discrepancy corresponds to a deviation
in the convective layer thickness: applying the theory leads to an underestimate of
the actual boundary layer thickness with a deviation that depends on the vertical
position. An estimate of this discrepancy gives a difference of less than 5% at the top
of the layer, 15% at the mid cavity, and about 25% at the bottom, for both thermal
and velocity boundary layers. We conclude that the analytical approach supplies an
excellent prediction of the radial dependence on the upper part of the wall, but only
an acceptable prediction close to the layer entrance.

3.4.2. Comparison of vertical dependences

In figure 9, we observe that the maxima of each pair of numerical and analytical
curves coincide well. We can therefore expect a good prediction of the overall
convection characteristics almost everywhere in the buoyancy layer. We consider
the thermal field first. From expression (3.10) we note that at a fixed value of z the
tank temperature is maximum at r = 1. Furthermore, this maximum increases with z.
More precisely, Tm, the maximum (with respect to r) of the temperature departure
from stratification Ts equals

Tm(z) = T (r = 1, z) − Ts(z) =

√
2

[1 + 2A − 2z]1/4Ra1/4
. (3.13)

A comparison between the numerical departure from theoretical stratification Ts and
the departure profile given by equation (3.13) is illustrated in figure 10 for A= 0.25
and Ra = 3 × 1011. The agreement is quite satisfactory at most vertical positions,
except at both ends of the convective layer, where the flow interacts with a horizontal
boundary layer at both corners. In view of figure 8, where temperature data on the
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Figure 10. Temperature departure from stratification Ts on the tank lateral wall vs. vertical
coordinate for A = 0.25 and Ra = 3 × 1011 : comparison between numerical (dotted) and
analytical (solid) predictions.

wall coincide perfectly, we can conclude that the small thermal deviation occurring
on the wall in figure 10 is due to a deviation of the numerical stratification from
the theoretical one (Ts). A rough estimate indicates that the difference remains lower
than 10% in the layer core (i.e. far enough from the corners), though note that the
present theory nevertheless supplies an excellent prediction because this discrepancy
only concerns a correction. It is furthermore evident that the highest temperature is
not attained at the end of the convective layer, because after the upper corner the flow
experiences a new heating process in an horizontal thermal layer. For the ascending
velocity along the lateral wall, expression (3.11) provides us with the maximum value
of each radial profile as follows:

Vm(z) =
e−π/4

[1 + 2A − 2z]3/4
Ra1/4. (3.14)

Figure 11 presents a comparison between the analytical results from expression (3.14)
and the numerical data computed at Ra = 3 × 1011 and A= 0.25. We observe a nearly
perfect agreement (difference of the order of 2%) between the two ascending velocities,
the close vicinity of both bottom and top cavity corners excepted. This confirms the
quality of the present theory and its potential for applications. This result also justifies
the need for an extension of the Prandtl theory, because in accordance with the Prandtl
theory the latter profile would have been rigorously flat (i.e. independent of z).

3.4.3. Extreme quantities in the tank

We denote by VMax the largest ascending velocity predicted by our theory. The locus
where this maximum is reached is situated at z =A, i.e. at the top of the ascending
layer. This is consistent with the numerical prediction, as indicated in figure 11. From
expression (3.14)

VMax = e−π/4Ra1/4. (3.15)

We first observe that this expression is independent of A. This agrees with the
numerical data plotted in figure 12, where the overall maxima of the vertical velocity
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Figure 11. Vertical profile of maximum (with respect to radius) ascending velocity (for
Ra =3 × 1011 and A = 0.25): comparison between numerical (dotted) and analytical (solid)
predictions.
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Figure 12. Numerical predictions of maximum ascending velocity vs. Rayleigh number for
different aspect ratios; velocity is normalized with κ/R. Dotted straight line corresponds to
theoretical prediction e−π/4Ra1/4.

are plotted for various A; the three (plain) curves show the same asymptotic behaviour,
which corresponds to an ascending velocity proportional to Ra−1/4. Furthermore,
fitting these asymptotic numerical results on the maximum ascending velocity, as
plotted in figure 12, provides us with the following estimate: VMax ∼ 0.44Ra1/4. The
fitting constant of 0.44 compares well with e−π/4 ≈ 0.456, the theoretical constant in
expression (3.15).

We next consider another overall quantity: TMax , the highest temperature in the
tank. It is easy to see that theoretical expression (3.10) gives the highest temperature
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Figure 13. Maximum temperature TMax for aspect ratio A =0.25: analytical predictions
(from (3.18)), plotted vs. Ra, are compared with numerical results (dotted curve).

for (r = 1, z = A) as

T c.b.l.
Max = (1 + A)A +

√
2

Ra1/4
(3.16)

(where c.b.l. stands for convective boundary layer). Unfortunately, this result cannot
predict the actual value of the storage maximum temperature; the tank ceiling
continues to heat the vapour. When the fluid passes along the top wall, a second heat
transfer across an horizontal thermal layer occurs. This heating process seems to be
more complex to interpret, because it is coupled with the return descending flow. Let
us denote by �Θ the additional non-dimensional temperature increase when the fluid
flows along the tank ceiling subjected to uniform heating. Thermal boundary layer
theory provides us with the classic expression (see e.g. Schlichting 1968)

φ0R

λ
�Θ =

φ0

ρcpU
f

(
L

d

)
(3.17)

where f (L/d) is a particular function of the ratio of length to thickness of the layer,
and U is the typical velocity. For the present problem, f (L/d) seems impossible to
calculate theoretically. Consequently, we turn to a different estimate, which can easily
be obtained from our numerical results concerning the tank flow: as the Rayleigh
number varies, we remark that the product VMax�Θ remains more or less constant,
of the order of VMax�Θ ≈ 4/5. Therefore, the capability of the theory to give VMax

(equation (3.15)) allows us to supply an analytical prediction of the overall maximum
temperature:

TMax = T c.b.l
Max + �Θ = (1 + A)A +

5
√

2 + 4e−π/4

5Ra1/4
. (3.18)

To conclude the numerical validation of (3.18), we have plotted in figure 13 the
maximum temperature in the storage tank obtained from our computations, as well
as the data from equation (3.18), for A= 0.25 and the whole range of Rayleigh
numbers. The agreement is excellent at large Ra; one can now claim that expression
(3.18) supplies the vapour maximum temperature in a storage tank at high Rayleigh
number (say Ra > 107), and consequently the thermal profile of the tank tends to
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Ts(z) everywhere as Ra tends to infinity (and as long as the flow remains axisymmetric
and steady).

4. Conclusions
This article aimed to derive a new analytical approximate solution for convection

in a stratified medium induced by a uniformly heated vertical plate. The stratification
is assumed to be nonlinear; the corresponding vertical temperature gradient therefore
has an intrinsic length scale of variation. The derivation we have carried out
supposes that this length scale is large compared with the intrinsic lengths in the
convection boundary layer along the plate. This hypothesis was expressed in the form
of conditions (2.54).

We then applied this theory to the practical problem of a liquefied gas storage
tank in order to predict the characteristics of the convection flow induced by the ex-
ternal heat transfer through the tank walls. The model of the convection in the
cylindrical tank was chosen in the simplest way, and remains to be justified (see
below). Under this formulation, the convection flow was numerically computed with
a high-precision method. Inspection of our numerical data showed that the flow is
nonlinearly stratified in the bulk. This stratification profile has been found to converge
slowly towards some quadratic profile, which is then used as an input required in
applying the theory.

We obtained several successful comparisons between numerical data and theoretical
predictions. In a general manner, the comparison of the ascending velocities is
excellent in the upper half of the convection layer. In the lower half, the convection
layer thickness is disturbed (within the range of 25%) by the inlet conditions
which come from the bottom corner. This upstream perturbation is progressively
damped along the convection boundary layer. For the thermal field, we showed
that it converges towards the proposed quadratic profile of stratification as the
Rayleigh number tends to infinity (as indicated by expressions (3.10) and (3.18)).
When attempting to validate the form of the departure from this general profile
in the layer (i.e. a first-order correction), we were faced with the difficulty that the
discrepancy in the bulk stratification induces a systematic 10% difference between
the numerical and analytical departures.

To complete this application of the theory, it remains to analyse the coherence
of the present results with both our main hypotheses in convection modelling: the
vaporization flow rate is negligible, and the temperature variations in the tank have
a little influence on imposed thermal flux boundary conditions. Vaporization flow
can be neglected (at the liquid–vapour interface) if its ratio to the typical convective
velocity is much smaller than one, i.e. if

(1 + 2A)φ0

ρ0Lvap

	
(

αgφ0κ
3

νλ

)1/4

,

Lvap being the latent heat. In other words, the assumption holds if the following
condition on the imposed heat flux is satisfied:

φ0 	
[
ρ0Lvap(αgκ3/νλ)1/4

1 + 2A

]4/3

,

which represents a first condition of good insulation that is needed to validate the use
of the present model for application to liquefied gas storage (here, good insulation
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means that the heat flux, which enters the tank, has to be small compared to a given
value).

Regarding the assumption that a uniform thermal flux can be imposed on the upper
and lateral boundaries, we have to check that the tank inner temperature fluctuations,
as given in equation (3.18), are small compared with the temperature difference
between the inside and the outside of the tank, i.e. Tmax 	 Tout , where Tout stands
for the departure of the external temperature from T0, the liquid/vapour equilibrium
temperature. Finally, the second condition of good insulation is

φ0 	 Toutλ

A(1 + A)R
.

Even for practical applications in cryogenic gas storage, the second assumption might
be more difficult to fulfil, especially for a tank of large size.

In spite of this last restriction for possible applications, we have shown that our
approximate theory is capable of predicting, with a very acceptable precision, the
characteristics of a practical case of laminar convection in an enclosure, where a
nonlinear stratification occurs at high Rayleigh number.

The authors thank the French National Space Agency (CNES) for the financial
support granted within the framework of COMPERE program.
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